Jump to content

Andrew at MEA

  • Content count

  • Joined

  • Last visited

  • Days Won


Andrew at MEA last won the day on July 24 2017

Andrew at MEA had the most liked content!

Community Reputation

13 Good


About Andrew at MEA

  • Rank

Personal Information

  • Organisation Membership

Recent Profile Visitors

388 profile views
  1. Andrew at MEA

    What does it take to be an IoT engineer?

    A ‘BeeTLE’ in the IoT Yippee! – no more USB cables to connect into our IoT devices to set them up! Our new measurement and data logging core – code-named the ‘BeeTLE’ during product development – uses a Blue Tooth Low Energy (BTLE) radio link instead. This is a non-trivial step forward in field measurements, because connectors are the weak-points in field enclosures. At 2.4GHz, enclosure walls are transparent to communications while remaining opaque to rain, sun, dust and wildlife. Similarly, the need for robust portable field computers has finally disappeared; mobile phones – already Bluetooth and 3G/4G enabled ­ – and custom apps pick up that load. For the past five months MEA’s product development focus has been on the development of the simplest possible and lowest-cost IoT device that could read our range of on-farm sensors. This BeeTLE core would be the fundamental logging platform from which future products would step off as we add LPWAN, CAT-M1, NB-IoT and satellite backhaul links. For the moment though, BeeTLEs need only human legs + smart phones + nimble fingers + modest intellect to go out there to fetch data. Data logging fills in the measurement gaps between visits, and the irrigator trades off his travel time against the convenience and higher capital cost of always-on IoT telemetry systems. There are no network Hubs or Gateways needed; the user has those in his pocket in the shape of his mobile phone. Telstra and their ilk provide the longer back-haul of data and send him the bill for those services. Green Brain – MEA’s existing database and farmer web app in the Cloud – provides all the long-term data storage. Once new data is uploaded from a BeeTLE through the mobile phone to Green Brain, graphical data all comes back down over the Internet to the same smart phone for data display. The devil is – of course – in the detail. What happens when the measurement site is out of 3G/4G coverage? (Answer: Unloading takes place normally between BeeTLE and phone, with data stored in the phone’s memory. Upload and data display happen automatically once the farmer returns within range of either Telstra or his home/office Wi-Fi system) Can multiple users – the farmer and his workers – unload the same BeeTLE? (Answer: Yes. Green Brain tracks and automatically synchronises phones and incoming data) And so on and so forth. Good software engineering ensures that the whole process is seamless and ultra-simple for the user, despite lots of clever stuff being needed behind the scenes to cope with all the edge cases. But what’s the really cool thing about Blue Tooth connectivity? The Beetle – now called a ‘GBLogger’ because its powered by Green Brain – needs no On-Off switch! If connectors are a pain, access to power switches elevates that enclosure vulnerability to a whole new level. But no switch is needed; the entire product runs on less than 25µA of current, allowing the GBLogger’s batteries to be loaded and sealed in at the factory with years of shelf life ahead. And Australian aircraft now allow ‘gate-to-gate’ usage of such low-power BT devices, so GBLoggers can be shipped by air while continuing to advertise their readiness to start logging at a moment’s notice. Figure 1 This simple MEA circuit board is at the heart of a battery-powered, Bluetooth-enabled smart-sensor and Green Brain-enabled data logger for the simplest possible MEA on-farm IoT platform
  2. Andrew at MEA

    What does it take to be an IoT engineer?

    The IoT and the Iron Triangle The Christmas break was over and – in mid-January of this year – we regrouped here at MEA to figure out what our next product offering would be. Across the table from the engineering team sat our management and marketing folk who – for some reason – were looking us rather sternly in the eye. “Now” – said our MD – “we don’t set product development time-lines to meet market-launch opportunities but we need new product to go on show at the Irrigation Australia International Conference-Exhibition in Sydney between the 13th-15th June 2018” And so, it all began again… As engineering director, my job is to look blithely unconcerned at these times and to prevent panic breaking out among the younger engineers. Five months, to go from a clean sheet of paper to working prototypes that will utilize new technology across all the diversity of skill sets that form MEA’s IoT product development team – electronics, PCB layout, firmware phone app and web app developers, mechanical engineering and industrial design, manufacturing, packaging and all the usual interplay with our marketing, sales, operations and service people. Not to mention our suppliers… As engineering director, I don’t get to do anything specific in the way of design work anymore, but I’m expected to be across every facet of this IoT ‘sprint’ to an immovable goal post. So, I make use of the ‘Iron Triangle of Product Development’. This rule-of-thumb states that you have to continually make decisions between Quality, Cost and Time-to-Market. But you only get to choose two out of three, because they are all in their way mutually exclusive. What the rule doesn’t say is that different segments of the project get different mixes of choice. Sometime I’ll choose Quality and Speed at some additional production Cost. At other times I need to sacrifice Quality to Time-to-Market and lower Cost. And so on and so forth, literally on a daily basis. So, on this past Tuesday (June 12th, 2018) our marketing team flew into Sydney from Adelaide and Queensland with the expected new product good to launch. True, we only finished firmware a week ago, the phone app half a week ago, and a brand-new version of Green Brain just two days before. And we had to pull a few swifties by 3D-printing new parts of the enclosures rather than the more time-consuming business of creating injection-moulding tools. We took the risky step of prototyping PCB and early-production run PCB assemblies in China for the first time, because local manufacturers are not well set up for rapid and inexpensive prototyping. And we kind of skimmed over the extended field trials, relying on 35 years of data logging and field experience to direct our in-house testing. So, we made it, thanks to a deep well of company experience and rapid prototyping techniques. No doubt next week we’ll be getting the stern eye once again, and we’ll limp once more to the starting blocks.
  3. Andrew at MEA

    Smart Passive Sensors

    ON Semiconductor have introduced a range of IoT wireless sensors for measuring temperature, moisture, pressure and proximity that are battery-free and microcontroller-free—using standard protocols. https://www.allaboutcircuits.com/industry-articles/the-rundown-of-on-semiconductors-smart-passive-sensors-sps-for-the-iot/
  4. Andrew at MEA

    What does it take to be an IoT engineer?

    The IoT and some Ancient History It was the winter of 1988 and I was shivering with fright in a garage attached to a rented house wherein my wife and three preschool sons awaited whatever bread I could put on the table. I’d completed my work on the South Australian Wind Energy Survey (1984-1987); I’d been contracted to make wind and solar measurements at over thirty sites across the state, logging the data and analysing it on the first IBM PC computer blitzing along at 4.7 MHz. This marvel of cutting-edge technology had two 8-inch floppy drives but no hard drive, no telemetry and a bulky monochrome display. Mechanical printers were slow and noisy. Home-made data analysis software had to be written in BASIC. The Internet was a term and a technology yet to be dreamt of. Renewable energy In South Australia died as soon as the Government-sponsored Wind Survey was completed in 1987. It simply had no traction at all with our electrical authorities who – frankly – had no intention of taking that ‘hippy technology’ any further while there was still plenty of coal to be mined at Leigh Creek in the State’s far north. All those wind measurements gained me a Master’s Degree in Electronic Engineering, but I was now seriously out on my own, sitting at a battered wooden desk with a second-hand kerosene heater as the only source of warmth. Measurement Engineering Australia (MEA) was underway and I was now a pioneer in the brave new world of desktop computing, environmental sensors and data logging. [No grandiose visions of sales outside my home state led me to add ‘Australia’ onto the company name: I just didn’t want to spend the rest of my working life talking about ‘ME’] 1987: Renewable energy and the IoT arrive simultaneously in South Australia, although nobody knew it at the time. At about that time, a long skinny German PhD student set out from the warmth of a European summer to fly down to Australia to start his doctoral studies in agriculture in South Australia. Pretty soon he’d found his way to my lab and we set out together to measure the growth rate of oranges on the Loxton Research Station. ‘Plant-based measurements’ had arrived. Once all this remote measurement gear had been set up in the Loxton research orchard the data coming back showed a remarkable sensitivity to crop water stress. How could I reproduce these measurements in crops that didn’t have oranges hanging off them? So began a thirty-year odyssey to develop a sensor so sensitive that it would allow the plants to do the talking: not the soil, not the atmosphere – the plants! Along the way I studied both ancient and modern circuits, went back to the basics of my craft, studied endlessly through weekends, nights and annual leave and gained a PhD and a Dean’s Commendation. I gave lectures in Europe to scientific audiences, wrote papers for international journals, ran field trials of the sensor in Australian vineyards and analysed the results. I began to see a way forward. All this from the kitchen table, for although I now had a larger desk at MEA there was little time or budget available for such a long-term endeavour. I’d set out to create a ‘new-to-world’ sensor and wound up with a superb education in analog and digital electronics. Three decades have passed and I’m still not at product launch. But I do have a few secret weapons. Down the backyard is my home lab, put together through careful shopping on eBay for second-hand instruments. It is here – during more evenings, weekends and annual leave – that I gained ground that would have been impossible among the distractions of my daily rounds as MEA’s Engineering Director. Data logging and desk-top computing have transmogrified into the Internet of Things, and I’ve become an old dog who understands all that stuff. I’m surrounded by the finest technicians, engineers, marketing, management and operations people who cover off on those skills I don’t have. The business infrastructure is solid. I’ve had decades to learn about viticulture and horticulture at first hand. Plexus routinely carry soil moisture and climate data and deliver it to farmers via MEA’s Green Brain. Best of all, the Internet of Things now spoils me for choice, just as I find myself looking to launch this new crop water stress sensor. Should I choose satellite, Bluetooth, narrow-band or CAT-M1 cellular IoT technologies or the ultra-narrowband Sigfox network? Nothing frightens me anymore; I can put my hand to any combination of these technologies to deliver plant-based measurements to Green Brain and farmers. Wind and solar energy took off in South Australia big-time in the early 2000’s, driven by commercial interest and new players in the energy market. MEA was well-positioned to grow with that wave. We instrumented over three hundred wind monitoring systems across Australia, many of which now host massive wind farms. Likewise, with solar monitoring. Funds from my first outing as a pioneer were reinvested in the development of Plexus and Green Brain IoT technologies for agriculture. And that long skinny PhD student of long ago got over the academic line and returned to Germany as Doctor Braun, now Professor Braun. That small task he left me – to improve on methods of making plant-based measurements – has blown out to become the swan-song of a long engineering career. But at least the IoT is now here to allow me to connect it all up…
  5. http://myriota.com/myriota-closes-series-a-funding-round/
  6. Hi Heath I'd be happy to give a talk about on-farm IoT if that would interest your group. July would suit me. Best regards Andrew at MEA
  7. Andrew at MEA

    What does it take to be an IoT engineer?

    A Litmus Test for the IoT Thanks for your kind words, Tim The modern conundrum is that there are two audiences in this IoT hype cycle; those seeking funds who are targeting investors, and those building real systems targeting farmers with gear that must work and be supported on-farm for at least a decade. It’s taken me a long time to figure out a way to differentiate between the two. The former is characterized by new players who see agriculture as a ripe field for new IoT products. These folks seem to be acting under the old British legal mechanism known as ‘Terra Nullius’ which sees Australian agriculture as ‘an empty land’ available for plunder. The fact that there is a rich history of trial and error, success and failure by long-standing companies in this arena is simply brushed aside, or goes unrecognized as an inconvenient truth. This is possible because both startups and investors are equally ignorant of the deep ground truths that make agriculture such a difficult place to make a living. The second class of citizen are those who have been in the game for a long period and know just how hard this business is. It’s not simply that equipment is beaten up by Acts of God, Mother Nature, animals, lightning and rogue humans on farm machinery, but that farmers are both a practical and sceptical bunch; they have been parasitised by every salesperson on the planet. Farmers don’t read web sites then buy the glitz; they find out from fellow farmers which suppliers are cutting the mustard in looking after them in the long haul and offering value. They have sheds full of stuff that didn’t work! You can recognize the real players by their bruises and their reluctance to skite about how terrific they are. They know where the bodies lie. Any success is hard-won. In short, nobody gets credence with me in the game unless they’ve been through a long period of on-farm humiliation. This takes years of tenacious effort, toe-to-toe with farmers and their agents, making stuff work and fixing what doesn’t. Your case study telling of Taggle’s reasons for getting out of the agriculture market pretty much makes my point. So, hoping 2018 is a good year for you too, Tim. You and Geoff Sizer have done much for Australia's engineering community by the creation of this forum.
  8. Andrew at MEA

    What does it take to be an IoT engineer?

    Old Dogs and the IoT It’s been a year of the utmost tedium: MEA versus Mother Nature in the ‘Valley of Death’. Done and dusted. Our Green Brain now holds ¾ billion climate and soil moisture records and this grows at about a dozen new records every second. Plexus ‘ZigBee’ + 3G telemetry delivers IoT data from over 4000 sites. Farmers can access their data at any time, from anywhere. The MEA production line and service department are likewise approaching calm and stability. We’ve got the bugs out of many things. But from every angle I’m still being told that “the true role of an IoT startup is to EXIT!” Under this modern business model, my job would be to carry the cash to the bank and to let the new buyer pick up all the loose ends of first IoT product release. It would be up to the new company to go through the hard slog of creating real value, brand loyalty, jobs and channels to market and service. ‘Old school’ – on the other hand – strives for the paradox of product stability and a sustainable business. You can’t be sustainable if you don’t obsolete your stable old products and battle through the Valley of Death after product launch to stabilise the new ones. Since MEA first launched modern on-farm IoT product in 2013 there has been an explosion of technology, hype and competition. Therefore, the race continues: we’ve learnt that no single IoT solution fits all farms. Once again, we are creating a new startup within an old company. On the drawing board are not one – but four – modern IoT technologies that will spring forth to plug the gaps in our product spectrum and our competitors’ muzzles. And what can I conclude from all this? Simply that general-purpose ‘measurement engineering’ – a discipline I invented for myself 34 years ago to describe what I did for a living – is a pretty good fit to the modern IoT.
  9. Andrew at MEA

    Telstra's NB IoT network launched

    Gentlemen Thanks for the interesting update on the Telstra IoT network switch-on. We've been waiting for this news. Sadly for us, our modem supplier (Sierra Wireless) won't release matching LTE Cat-M1 hardware until some time in 2018. So sadly, no-way we can put all this to the test. I wonder if the pricing models reflect the much smaller payloads the IoT will be using?
  10. Andrew at MEA

    What does it take to be an IoT engineer?

    The Long Tail of the IoT Some days I just want to run and hide! For 42 years I’ve been engineering measurement technology for mining, renewable energy, climate and agricultural applications. And time and again I’ve been whipped by the long tail of in-field product failures. Is it just that I’m crap at this stuff? It’s tempting to think this way when our marketing staff are throwing rocks through my window, customers are ringing in with reports of equipment outages, agents are threatening insurrection and our manufacturers and suppliers stiff us with dicky mouldings, sensors or PCBs. I have only one answer at these times, and that’s to keep my trap shut and begin the long business of grinding down problems that arise, one at a time, and to hope that MEA can survive in business until the current crisis is forgotten in the rear-view mirror. Do all these kids forecasting a rosy future for themselves ‘in the IoT space’ have any idea at all what it’s like on the other side of product launch? Because that’s when one starts down the long tail of product support and maintenance… A third major Australian competitor of ours collapsed this past year, with the remnants of their technology sold off to an overseas concern, local staff laid off and all customers abandoned. Many smaller ones have come and gone over the past few decades. Two of these three companies were backed by tens of millions of dollars in investment funds. They got through to product launch before in-field issues stared to bite and profit levels failed to rise to lift the company before investor cash burn ceased. Maybe life’s easier for those IoT developers sheltered inside Smart Cities? But somehow, I doubt it. MEA is now five years down the track from our very first commercial installation of an on-farm IoT ZigBee sensor network (we still hadn’t got the connection to the cloud working back then – all data landed on the farm PC) Week after week for all those intervening years we’ve been working to shore up our technology and processes that showed weaknesses under a real-world hammering. No victory can ever be declared, simply because no marketplace or technology is ever permanent. As Winston Churchill put it: “If you're going through hell, keep going.”
  11. Andrew at MEA

    What does it take to be an IoT engineer?

    The IoT and the Startup Mirage Hardly a week goes by without a brand-new Startup trumpeting their claims to vast IoT territories that I’ve so laboriously trudged across these past few decades - all with the vast expenditure of technical and marketing effort and the humiliation of field failures. Sexy websites show groups of attractive and happy young people all holding slim notebook computers or sitting in front of modern terminals in airy bright atrium work spaces - all this far removed from the cluttered bench space of our working engineers and the reality of a manufacturing facility. A quick scan of the startup's Board Members shows some pretty high-flying suits, no doubt moving through rarefied circles well beyond my ken while collecting salaries far exceeding my own hard-earned stipend. The very occasional Case Study of a field deployment mentioned on these web sites trumpets only Success, dressed up to look like a massive product rollout that’s taken a grateful market by storm. Ringing around the marketplace throws a harsher light on these systems; they are often merely preliminary trial units on free-loan to potential customers, rather than working systems sold after winning over skeptical farmers. Look under the News tab on these web sites and you’ll find photos of company executives in black tie and tails at Award ceremonies, being congratulated on their tremendous growth (potential). Perhaps the final indignity is the ready cash showering down – investors seem to flock to startups, while companies demonstrating organic growth, sound management, field-proven products, job creation, customer loyalty, a high level of support and routes to market stand ignored on the sidelines. Totally flummoxed by all this modern-day smoke and mirrors, I sought a non-engineering perspective. I tried to follow the resulting explanation – I really did! The bottom line seems to be that I’m a troglodyte mired in the perception that the best indication of market success is a signed purchase order and positive cash flow. That it’s not about what you can design and sell, but about selling yourself and your startup’s ‘disruptive potential’ to groups of investors (gamblers?) based on a storyboard of your trajectory to becoming the next Google, Apple, Amazon or Tesla. So I’m left trying to find some small crumbs of comfort amidst a tidal-wave of media releases suggesting that our end is nigh. Perhaps I’ll just ignore all the clamour and stick to my knitting, leaving the passage of time rather than the world-wide-web to make the final judgement call on who really succeeded in making something out of the IoT.
  12. Andrew at MEA

    Introducing Bluetooth Mesh Networking

    Nice video of the difference between point-to-point and mesh-networked radios; thanks for posting.
  13. http://myriota.com/myriota-wins-best-new-business-sa-telstra-business-awards/ South Australian satellite-based IoT company Myriota is becoming "recognised for turning clever technology into a successful business”
  14. Andrew at MEA

    What does it take to be an IoT engineer?

    The IoT and Life in the Cloud The Internet of Things is intimately married to the Internet and its (actually ground-based) Cloud Computing. This whole centralized on-farm software has freed MEA from the tyranny of PC-based data presentation with all its upgrade issues, computer obsolescence, software on CDs and web-sites, and the constant need to cope with changing Windows operating systems. With Cloud-based computing, we have a single web-application to maintain on a single server (someplace) in the Cloud. Serving all our users simultaneously... Yet with these new freedoms come new responsibilities; one small slip and we have hundreds of users howling at our door. Where’s our data!!!??? And so, this whole business of cloud-computing is one of constant vigilance, late night panics, server and Internet outages and the usual costly upgrades to ensure that we are using the very latest web and graphics software tools. All this without even thinking too hard about security, backups and Acts of God. MEA’s Green Brain web app - and the Plexus IoT on-farm hardware feeding it - celebrate five years from launch in early August this year. The number of users has risen from one or two Early Adopters to hundreds of irrigators spread right across the map of Australia’s arable landscapes. We’ve been working recently to connect MEA’s regional weather station networks to Green Brain; more useful data for farmers, yet a widening of MEA’s responsibility to the general farming community to keep this whole complex technical structure up and operating. Green Brain’s data base now holds a non-trivial half-billion records and is growing apace. So the question must be asked: “Have we created a monster or a valuable tool?” And the answer might well be that we don’t know, because the game’s still on and we keep juggling the difficulties, making small wins, discovering weaknesses and endlessly tweaking our way out of them. In fact, just doing what MEA has been doing since I founded the company in 1984 – getting environmental data back from the Australian bush.
  15. Andrew at MEA

    US stamps down on non-compliant IoT devices

    Thanks Tim - a scary post, indeed. Putting aside the $90,000 fine on that one non-compliant product/company, the FCC is essentially stating that it has the power to ban a product or manufacturer from the US market for ever! I've talked elsewhere on this forum about the very high cost of gaining FCC and CE compliance certification ('The IoT and Electro-Magnetic Compliance') The hidden sting in the IoT tail is that one cannot count for protection upon the US radio manufacturer's own FCC compliance statements*; you have to undertake full IoT product compliance yourself. In Australia, this will set you back about three months and nearly $20,000. This is one of the arguments for using radio 'modules' - as opposed to chips sets - in your IoT product design. The module will carry its own EMC compliance certificate, at the expense of a large impost in price once you start to manufacture in quantities. * we found that Texas Instrument's ZigBee 'system-on-chip' radios breached the allowable FCC noise levels in the 2.4 GHz side-bands, effectively shutting us out of the US market until we fitted band-pass filters to the Plexus radio transmitters.